az United States Patent

US012219000B1

ao) Patent No.: US 12,219,000 B1

Firoozye 45) Date of Patent: Feb. 4, 2025
(54) HIERARCHICAL UNIVERSAL DEVICE 2017/0373855 Al* 12/2017 Pritchardooo....... HO4L 67/12
IDENTIFIER 2018/0295133 Al* 10/2018 Xu .oooe...... ... HIOAL. 65/40
2021/0120090 A1* 4/2021 Wangccceoeeenee. HO4L 67/51
(71) Applicant: Amazon Technologies, Inc., Seattle,
WA (US) FOREIGN PATENT DOCUMENTS
(72) Inventor: Ramin Firoozye, Berkeley, CA (US) wo WO-2020000042 AL * 1/2020 ..o GO6K 17/00
(73) Assignee: Amazon Technologies, Inc., Seattle, OTHER PUBLICATIONS
WA (US)
Y. Zhou, Y. Gao, H. Hu and J. Wei, “Research and Implementation
(*) Notice: Subject. to any disclaimer,. the term of this of Product’s Encoding Intelligent Transformation in Supply Chain,”
patent is extended or adjusted under 35 2009 Second International Conference on Intelligent Networks and
U.S.C. 154(b) by 196 days. Intelligent Systems, Tianjian, China, 2009, pp. 649-652, doi: 10,1109/
(21) Appl. No.: 17/364,600 ICINIS.2009.182. (Year: 2009).*
. No.: s
" .
(22) Filed: Jun. 30, 2021 cited by examiner
G 215211?1&5/70 (2022.01) Primary Examiner — Caroline H Jahnige
HO4L 67/12 (2022.01) (74) Attorney, Agent, or Firm — Davis Wright Tremaine
(52) US.CL LLP
CPC ...coeeeuee. HO4L 65/70 (2022.05); HO4L 67/12
(2013.01)
(58) Field of Classification Search 7 ABSTRACT
CPC oo HO4L 67/12; HO4L 63/0876
See application file for complete search history. In various embodiments described in the present disclosure,
a device identifier is generated based at least in part on a set
(56) References Cited of values corresponding to a set of fields representing

U.S. PATENT DOCUMENTS

2010/0065636 Al1* 3/2010 Byun ... G06Q 10/08
341/1
2012/0191637 Al1* 7/2012 Matsunaga GO6N 5/02
706/47

information associated with a device. For example, the set of
values are converted to a bitstream which is encoded using
an alphabet based at least in part on an encoding schema.

20 Claims, 7 Drawing Sheets

500

Obtain Values Corresponding to Fields of
Encoding Schema

I

Values

Generate Bitstream Based at Least in Part on

504

:

Encode Bistream Using Alphabst

L

:

Return Encoded Bistream

508

US 12,219,000 B1

Sheet 1 of 7

2025

9

Feb. 4

U.S. Patent

SDAB ot

0oL

sl ©

SIASC]

Yool

US 12,219,000 B1

Sheet 2 of 7

Feb. 4, 2025

U.S. Patent

0Ge

HIOMIBN

YOZ =

ace

O &

\Qw

m 32P4S mn+1

[pfujuigiajoxiz iy

T Lyl 8laipls] el

dioltiniAfajaia{mib

Vi
Vi

\\

cuonng |

puopng |

202 =

a0c

US 12,219,000 B1

Sheet 3 of 7

Feb. 4, 2025

s8R

e

I BOIAS(]

01g

| N epon

L -

L [SPOW

|

o |

[Nwslosg |

L4

| peloidg

0%

[N Aoz

L

L Amug

¥OE

| n uoisiep

&P

L LICISIBA m

ze |

U.S. Patent

G = VDA PiBid w G = UIPIAA PiBid

g1 = YIPIAA Disld mmx‘ = YIPIAA wmmﬁm ot = WP Dield | € = UIDIMA DBl M

0og

US 12,219,000 B1

Sheet 4 of 7

Feb. 4, 2025

U.S. Patent

2187
g L4 ENeh
#1018

gy
0Z #niep
L 1018

7iF
BdY] 8INSSeld
uchiusq adA | eeg

o

oy

iy
% [1e0ld4 1 Aopeq
uoiUie adAl Bl

BBIAB(]

Oly

M

g,

0%
ISpop

S0¥
10afoid

ﬁEE.EA

Pov
Aynuy

f

0%
UOISIap

U.S. Patent Feb. 4, 2025 Sheet 5 of 7 US 12,219,000 B1

500

Obtain Values Corresponding o Fislds of
Encoding Schema . 502

I

Generale Bitstream Based at Least in Part on

Values . 504
Encode Bistream Using Alphabet . 506

!

Return Encoded Bistream L 508

U.S. Patent Feb. 4, 2025 Sheet 6 of 7 US 12,219,000 B1

600

Obtain Device ldentifier L

I

Decode Device identifier Based at Least in
Part on Encoding Scheme L 504

I

Datermine Values For Fields of Device
identifier Based at Least in Part on Encoding a¥
Scheme

i

Ubtain Device Information Based af Least in
Part on Values . 808

¢

Determineg Addressable Component of The
Device Based at Least in Parton Device MU g4
information

v

Communicate With Device "L g2

e02

6086

U.S. Patent Feb. 4, 2025 Sheet 7 of 7 US 12,219,000 B1

700
- 04
Network
Application
Server(s)
TN
20¢ © @ S 28 ¢ © &
aoe (4] _RoQ x¥
S O OB o S O 8 (7]

j < ok @ Q w o o
706

C—J
Web 708

Server(s)
{ i
P - R A !
PO 0o
20 B I R I e
{ : ‘ User i
{ Production Log Information | |
§ .] B AN — - \ — B v §
{ L N U i
P e Ve TN
740 712 714 718

US 12,219,000 B1

1
HIERARCHICAL UNIVERSAL DEVICE
IDENTIFIER

BACKGROUND

An increasing number and variety of devices are being
connected to networks to fulfill user needs. Some of these
devices may be objects and machines, such as refrigerators,
watches, motion detectors, gauges, sensors, and automobiles
that were not previously able to connect to networks. These
devices are commonly known as “internet of things”
devices. As these devices become more ubiquitous, oppor-
tunities may increase for providing new and innovative ways
of enabling these devices to interact with each other and
other computing devices. However, these devices are often
not configured to interact with other devices, especially
when these devices are manufactured by different entities,
and it can be difficult to add such functionality when these
devices are not designed to interact with other devices.

BRIEF DESCRIPTION OF THE DRAWINGS

Various techniques will be described with reference to the
drawings, in which:

FIG. 1 illustrates an environment in which a universal
device identifier enables a device to obtain device informa-
tion in accordance with an embodiment;

FIG. 2 illustrates an environment in which a universal
device identifier enables a device to obtain sense and control
information in accordance with an embodiment;

FIG. 3 is a diagram illustrating an encoding schema for a
universal device identifier in accordance with an embodi-
ment;

FIG. 4 is a diagram illustrating a data model for sense and
control data associated with a universal device identifier in
accordance with an embodiment;

FIG. 5 illustrates a process for encoding a universal
device identifier based at least in part on an encoding schema
in accordance with an embodiment;

FIG. 6 illustrates a process for decoding a universal
device identifier based at least in part on an encoding schema
in accordance with an embodiment; and

FIG. 7 illustrates a system in which various embodiments
can be implemented.

DETAILED DESCRIPTION

Systems and methods are described for encoding and
decoding a hierarchical universal device identifier for
uniquely identifying devices and/or components of devices.
In one example, an encoding schema utilizes a hierarchical
structure for a plurality of fields of the device identifiers. As
described in greater detail below, the universal device iden-
tifiers, in various implementations, can be assigned to a
variety of devices including devices that are capable of
exchange data over a network. For example, the encoding
schema can define a set of fields of various bit widths
representing a variety of information associated with a
device (e.g., manufacturer, model, project, components,
manufacturing location, batch, date, version, etc.). Further-
more, in an implementation, values associated with particu-
lar fields are organized into a bitstream and encoded into a
human readable universal device identifier based at least in
part on an alphabet. In turn, in such implementations, the
universal device identifier can be decoded based at least in
part on the alphabet to generate the bitstream which includes
the values associated with the particular fields. In various

10

15

20

25

30

35

40

45

50

55

60

65

2

examples, this enables the extraction of data from particular
fields (e.g., manufacture information, model number, device
name, etc.).

In addition, a data model can be defined to enable sense
and control operations with a device using information
obtained from the universal device identifier. As described in
greater detail below, the universal device identifier, can
encode information about entities associated with the device
(e.g., manufacturer, cloud service, database, etc.) and com-
ponents within the device itself (e.g., sensors, data, compo-
nents, interfaces, etc.) enabling access to specific data ele-
ments generated by a specific instance of the device. In one
example, a computing device decodes the universal device
identifier and, based at least part on information obtained
from the decoded universal device identifier, communicates
with a service to obtain sense and control information
associated with the device. For example, the service can
return information indicating data type generated by com-
ponents of the device (e.g., a temperature sensor) and
parameters for communicating with the device. In various
implementations, the universal device identifier encoding
schema includes the structure for a plurality of slots which
are defined within the data model and indicate sense and
control for the device.

In one implementation, a service of a computing resource
service provider provides a console or similar interface (e.g.,
application, dashboard, monitoring system, etc.) allowing
multiple individual devices and data generated by the
devices to be monitored and modified based at least in part
on the devices including universal device identifiers. For
example, the service can be used to monitor and manage
universal device identifier compliant devices without requir-
ing foreknowledge of the device types, data formats, com-
munication protocols, device components, value ranges,
and/or other information associated with the device.

In one example, the system and method described in the
present disclosure generate a universal device identifier for
Internet of Things (IoT) devices and/or objects that can be
used to obtain sense and control information for the IoT
device and/or objects. Various IoT devices may have a
custom communication protocol and/or identification
schemes; therefore, in order to be able to manage them and
access data generated by IoT devices in a uniform manner,
a universal device identifier system enables hardware data
elements to be identified down to individual values inside a
single instance of an IoT device. In one example, the
universal device identifier system enables monitoring of IoT
devices in real-time or near real-time.

In an example, the encoding schema includes a taxonomy
that defines a plurality of fields of varying widths to repre-
sent data. For example, the fields can include version
information, entity or organization identifiers, project iden-
tifiers, model identifiers, device identifiers, slot identifiers
(e.g., various components of the device), and/or other infor-
mation associated with the device (e.g., manufacturing loca-
tion, device version information etc.). One or more fields
within the device identifier may be omitted if not needed, for
example, when determining a manufacturing location, fields
corresponding to slots, version, and/or device may be omit-
ted. As described in the present disclosure, the resultant
identifier obtained by combining the plurality of fields is
then translated into a string value that can then be used to
address the individual element. Furthermore, the string
value, in various examples, is unique relative to other string
values representing other devices within the universal device
identifier system.

US 12,219,000 B1

3

In one example, an identifier generated in accordance with
the universal device identifier system enables, without
requiring data outside of the identifier, a determination of a
manufacturer, project, model, device, components thereof,
and other information associated with a device. In one
implementation of the universal device identifier system, the
string value representing the universal device identifier is
decoded or otherwise reversed to obtain this information.
Furthermore, in such implementations, this information is
obtained without the need to validate the universal device
identifier and/or the information obtained from decoding the
universal device identifier.

In the preceding and following description, various tech-
niques are described. For purposes of explanation, specific
configurations and details are set forth in order to provide a
thorough understanding of possible ways of implementing
the techniques. However, it will also be apparent that the
techniques described below may be practiced in different
configurations without the specific details. Furthermore,
well-known features may be omitted or simplified to avoid
obscuring the techniques being described.

As one skilled in the art will appreciate in light of this
disclosure, certain embodiments may be capable of achiev-
ing certain advantages, including some or all of the follow-
ing: (1) providing a mechanism for encoding and decoding
data about a wide variety of devices, (2) providing unique
human readable identifiers for a wide variety of devices, (3)
enabling communications with a wide variety of devices
including sense and control operations regardless of under-
lying communication protocols and systems of the devices,
(4) enabling virtual interfaces with a wide variety of devices
regardless of device components, communication protocols,
and/or interfaces, (5) providing a hierarchical or otherwise
structured system for uniquely identifying devices, and (7)
enabling the encoding of additional information associated
with devices and/or objects for troubleshooting.

FIG. 1 shows an environment 100 for obtaining device
information based at least in part on device identifiers
obtained from a first device 102A and a second device 102B
in accordance with at least one embodiment. In various
embodiments, a service 110 of a service provider 112
receives the device identifiers over a network 118 from a
computing device 104. The computing device 104, for
example, includes a handheld device, a wearable device, a
remote sensor, a home appliance, a wireless peripheral, a
network addressable camera, a mobile phone, a fixed cam-
era, a dashboard camera, an integrated sensor (e.g., a sensor
included in a vehicle or robot), a Light Detection and
Ranging (LIDAR) sensor, an infrared sensor, a smart home
device, or other computing device capable of obtaining as an
input a string value representing the device identifiers. In
various embodiments, the first device 102A and the second
device 102B includes an Internet of Things (IoT) device that
provides some functionality and is connected to the network
118 (e.g., Internet) either directly or indirectly (e.g., through
a proxy, gateway, mobile phone, or other device), and
includes a device identifier generated in accordance with the
universal device identifier system described in the present
disclosure. As described in greater detail below, the device
identifiers, in an embodiment, include a human readable
string value generated in accordance with a hierarchical
encoding schema that includes a plurality of fields corre-
sponding to information associated with the first device
102A and/or the second device 102B such as manufacture
information, model number, project information, device
name, slot information, manufacture date, manufacture loca-

10

15

20

25

30

35

40

45

50

55

60

65

4

tion, batch number, version information, device component
information, or any other information associated with
devices.

In an embodiment, the service 110 is an IP addressable
computing resource (e.g., a computer system comprising
one or more hardware server computer systems, such as
described below in connection with FIG. 7) that supports the
ability to directly address or be addressed by other network
devices, and which, in an embodiment, initiates a request to
one or more computing devices over a network (e.g., the
network 118 or other networks such as a service provider
network not illustrated in FIG. 1 for simplicity) in response
to obtaining a device identifier, a decoded device identifier,
and/or a portion thereof. In various embodiments, the com-
puting devices illustrated in FIG. 1, such as the service 110,
the computing device 104, the first device 102A, and the
second device 102B comprise hardware (e.g., processors,
storage devices, and memory) and software stored in the
memory that, as a result of execution by one or more
processors, causes the various computing devices to perform
one or more functions described in the present disclosure,
including providing device information based at least in part
on device identifiers. For example, the hardware of the first
device 102A includes one or more sensors and/or a trans-
mitter (e.g., Bluetooth, WiFi, LoRa, or other radio) to
transmit data 108 over the network 118.

Furthermore, the computing devices illustrated in FIG. 1,
in an embodiment, communicate with the service provider
112 and/or a component thereof such as the service 110
using Application Program Interface (API) functions. Fur-
thermore, in various embodiments, the first device 102A and
the second device 102B include a mechanism for providing
device identifiers to the computing device 104. In one
example, the device identifier of the first device 102A is
imprinted on an outer body of the first device 102A. In
another example, the second device 102B includes hardware
and/or software that provides the device identifier over a
communications channel in response to a query (e.g., the
computing device 104 obtains the identifier from the second
device 102B using near field communication).

In various embodiments, the network 118 includes a local
area network connected to the internet in a home, work,
public, or private environment. The network connection to
the network 118, for example, is established using a wired or
wireless connection. In various examples, a wired connec-
tion is established using an FEthernet interface, a USB
interface, a FireWire interface, a serial interface, a powerline
interface, or a fiber optic interface. In additional examples,
a wireless connection is established between the computing
device 104, the service 110, and/or the client using a WiFi,
Bluetooth interface, or other wireless interface.

The service 110, in various embodiments, is a computer
system that connects to objects to construct a network of
interconnected devices commonly known as the “internet of
things.” For example, the service 110 supports obtaining
device identifiers from the computing device 104, queries a
database or other storage device to obtain device informa-
tion (e.g., sense and control information), and returns the
device information to the computing device 104. The service
provider 112, in one example, provides an environment
within which one or more applications, processes, services,
virtual machines, and/or other such computer system entities
are executed to provide one or more computing resources to
clients including the computing device 104. In the embodi-
ments described herein, the client includes a person, a
process running on one or more remote computer systems,
or other computer system entities, users, or processes. The

US 12,219,000 B1

5

service 110, in various embodiments, includes a plurality of
services provided by the service provider 112 which, in
combination, provide all or some of the functionality
described in the present disclosure. Examples of the services
include machine learning for remotely performing training
and inferencing of ML models, a data storage service for
remotely storing data, a computing resources provisioning
service that supports remotely providing computing
resources (e.g., virtual machine instantiation, serverless
computing, application execution, databases), electronic
commerce services, and website hosting services, by way of
non-limiting examples.

As described in greater detail below in connection with
FIGS. 3 and 4, the device identifier is generated in accor-
dance with the universal device identifier system which
includes an encoding schema comprising structure (e.g., bits
corresponding to different fields within the device identifi-
ers) that provides additional information corresponding to
the device (e.g., the first device 102A and/or the second
device 102B). In various embodiments, the bits correspond-
ing to different fields are included in a bitstream (e.g., a
binary sequence) and encoded using an alphabet (generally
a collection of symbols) that is human-readable to produce
a string value. Furthermore, in accordance with the encoding
schema used, the different fields can be used to identify
aspects and/or information associated with the device and,
as illustrated in FIG. 1, can be used to obtain information
from the service 110 and/or other systems. In one example,
the computing device 104 determines a manufacturer of the
first device 102A based at least in part on the device
identifier, determines that the service 110 is associated with
the first device 102A based at least in part on the manufac-
turer, and provides model information obtained from the
device identifier to the service 110 in order to obtain
information indicating how to communicate with the first
device 102A from the service 110 based at least in part on
the model information.

Although not illustrated in FIG. 1 for simplicity, in some
environments (e.g., an industrial or office setting) the first
device 102A and/or the second device 102B communicate
with a gateway device connected to the network 118. In one
example, the first device 102A and/or the second device
102B communicate through a proxy such as a mobile phone.
In addition, in various embodiments, the gateway device or
similar device maintains data associated with and/or on
behalf of the first device 102A and/or the second device
102B. In one example, the first device 102A and/or the
second device 102B includes a wearable device (e.g., watch,
glass, ring, etc.) and a gateway (e.g., mobile phone) can
collect data from the wearable device, such as biometric
data, and store the data for an interval of time (e.g., while the
service provider 112 is unreachable). Returning to FIG. 1,
the first device 102A and/or the second device 102B, in
various embodiments, are an instance of a particular model
of a device for which a manufacturer has produced a
plurality of. In the example illustrated in FIG. 1, the second
device 102B includes a model of a smart speaker manufac-
tured by an organization responsible for manufacturing a
plurality of that particular model of smart speaker. In various
embodiments, fields of a set of fields of the device identifier
are associated with an entity (e.g., the organization), a
project (e.g., the project within the organization responsible
for research and development of the model of the smart
speaker), a model (e.g., the model of the smart speaker), a
device (e.g., the second device 102B), and slots of the device
(e.g., battery sensor, voice control software, microphone,
and/or speaker). In various embodiments, the entity and the

10

15

20

25

30

35

40

45

50

55

60

65

6

manufacturer are separate entities. In one example, an
organization develops the device, including design of the
device and a data model (e.g., sense and control information
associated with the device), and the manufacturer produces
the device according to the design developed by the orga-
nization.

In such embodiments, the device identifier can be used to
obtain instances of data associated with the device. Return-
ing to the example above, the device identifier can be used
to obtain a battery charge level based at least in part on the
device identifier and the slot associated with the battery
sensor. As described in greater detail below, a data model, in
various embodiments, is defined to describe data obtained
from the device (e.g., battery sensor). In one example, the
service 110 returns the data model with the device info to the
computing device 104 which enables the computing device
104 to determine a battery level from the second device
102B based at least in part on data obtained from the battery
sensor referenced in the device identifier. In various embodi-
ments, the device info provided by the service indicates a
mechanism for communicating with and/or controlling the
device (e.g., a particular model of a device or a particular
device itself such as the first device 102A) associated with
the device info. In one example, a slot associated with the
device is associated with control of the device (e.g., turning
the device on or off), the device info associated with the slot
indicates that transmitting a particular signal to an address-
able component of the device controls the device. In this
manner, the universal device identifier system enables sys-
tems and/or services to uniquely and unambiguously define
attributes of the devices and/or entities associated with the
device. In various embodiments, various aspects of the
device are anonymized. For example, a location of the
device, owner of the device, network address of the device,
and other information may be omitted, obscured, encrypted,
replaced, or otherwise anonymized.

In one example, a company is assigned an organization
identifier of 1000 and has a plurality of projects, including
a project responsible for creating a line of clock products
(e.g., the first device 102A). In this example, the project is
assigned an identifier of 23. Continuing the example, within
the project, there are multiple models of devices including a
model assigned an identifier of 200. Furthermore, the vari-
ous identifiers (e.g., organization, project, and model), in an
embodiment, are uniquely assigned. In other words, once the
company has been assigned the identifier of 1000, no other
company or entity is assigned the same identifier in accor-
dance with an embodiment. In various embodiments, the
computing device 104 and the service 110 include computer
systems as described in greater detail below in connection
with FIG. 7.

Returning to the example above, mass production of the
model of the device is performed and a plurality of devices
are produced including the first device 102A assigned the
device identifier of 56231. In various embodiments, firm-
ware or other executable code stored in memory of the
model of the device (e.g., model number 200), include a
number of attributes and/or slots. For example, the first
device 102A includes a slot assigned the identifier of 4
associated with a temperature sensor included in the first
device 102A. The first device 102A, in an embodiment,
periodically and/or aperiodically transmits data obtained
from the temperature sensor to the service 110. As a result,
in such an embodiment, the computing device 104 obtains
data generated by the temperature sensor by at least obtain-
ing the device identifier from the first device 102A and
utilizing the device identifier to poll the service for data

US 12,219,000 B1

7

associated with the slot assigned the identifier of 4. For
example, the device identifier associated with the first device
102A uniquely identifies the value obtained from the tem-
perature sensor for that instance of the device based at least
in part on the following string value:
“cqSmcIwA3NRpBsPvZ4.” As described in the present
disclosure, the string value, in various embodiments, is
generated by at least combining the various fields of the
device identifier (e.g., organization identifier, project,
model, device, and slot) to generate a bitstream (e.g., a
binary value representing the integer values 1000, 23, 200,
and 56231) and encode the bitstream using a particular
alphabet (e.g., hexadecimal, base 62, base 58, etc.). In one
example, the first device transmits data to update to the
service 110, identifying the value using the following
pseudocode:

{

“device identifier”: “cqSmcIwA3NRpBsPvZ4”,

“value”: 89.5

In this example, under the encoding schema associated
with the universal device identifier system, the service 110
decodes the device identifier to obtain data associated with
the slot in order to update the temperature data associated
with the first device 102A. In an embodiment, the service
110 decodes the device identifier (e.g., the string value
“cqSmcIwA3NRpBsPvZ4”) to generate data represented by
the following exemplary semi-structured data object:

cqSmcIwA3NRpBsPvZ4->

Version: 0
Entity: 1000
Project: 23
Model: 200
Device: 56321
Slot: 4

In the example above, the version information (e.g.,
“Version: 07) represents a version of the encoding schema
used. In various embodiments, different versions of the
encoding schema are created for various purposes such as
different encoding alphabets, different bit fields, different bit
widths, or other reasons. In addition, the version informa-
tion, in various embodiments, is processed prior to the rest
of the device identifier or otherwise separated. In one
example, the version information is determined prior to
decoding the string value to determine the appropriate
alphabet for decoding.

In an embodiment, certain values are omitted to allow for
addressing a group of items. For example, by omitting the
slot value, the device identifier references a single device
instance (e.g., the first device 102A) and can be used as a
Universal Product Code (UPC) for that specific instance of
the device. In this example, the generated device identifier in
accordance with the encoding schema would be
“cqSmcIwA3NRpBsPvYY” which is unique to that indi-
vidual device (e.g., the first device 102A) relative to other
devices with device identifiers generated in accordance with
the encoding schema. As described in greater detail in
connection with FIG. 2, in various embodiments, the device
identifiers are converted into a bar-code or Quick Response
(QR) code value and used as an identifier on the exterior of
the device. In another example, by omitting slot, device, and
model fields, the resulting device identifier (e.g., the
encoded string value “cqSmcld8yMSkicUjgQ”) can be used
to access data relevant to Project 23 at Entity 1000. The
following example of a semi-structured data object repre-
sents the resulting device identifier with the slot, device, and
model fields omitted:

10

15

20

25

30

35

40

45

50

55

60

65

8

cqSmcld8yMSkicUjgQ->

Version: 0

Entity: 1000

Project: 23

Model: 0

Device: 0

Slot: 0

Similarly, in another example, if the device identifier is
generated using the entity, project, and model (e.g., omitting
the device and slot) the resulting string value represents the
model and can be used as a Stock Keeping Unit (SKU). In
various embodiments, the universal device identifier system
is bi-directional and can be embedded in a range of devices
including, but not limited to: automotive devices, embedded
systems, entertainment devices, home appliances, industrial
automation tools, medical devices, mobile devices, scientific
instruments, “smart” devices, toys, transportation equip-
ment, wearables, or other devices capable of communicating
information. Furthermore, the universal device identifier
system supports directly addressing trillions of devices, and
quadrillions of uniquely identifiable data points (e.g., slots)
in accordance with various embodiments. In various
embodiments, the values are converted to binary values;
however, any base or representation of the attributes of the
device as values can be used in connection with the present
disclosure. For example, the values can be converted to
hexadecimal values prior to encoding utilizing the alphabet.
Furthermore, in various embodiments, the set of fields
correspond to device attribute types. For example, the set of
fields indicate attributes of the device such as model, manu-
facturer, organization, project, batch, construction date, con-
struction location, components, or other attributes of the
device.

FIG. 2 shows an environment 200 for obtaining a virtual
device interface based at least in part on a device identifier
obtained from a QR-code 208 included in a device 202 in
accordance with at least one embodiment. In various
embodiments, a service 210 of a service provider receives
the device identifier over a network 218 from a computing
device 204. The service 210, computing device 204, the
device 202, and the network 218, in an embodiment, include
a hardware and/or software as described above in connection
with FIG. 1. In one example, the computing device 204
includes a virtual reality headset or augmented reality
glasses.

In the example illustrated in FIG. 2, the computing device
204 includes a camera that captures the QR-code 208, the
computing device 204 then obtains, from the QR-code, the
device identifier associated with the device 202. As
described above, the device identifier (e.g., a string value)
generated in accordance with an encoding schema on the
universal device identifier system can be encoded in a bar
code, QR-code, or other machine-readable information. In
various embodiments machine-readable information
includes various mechanisms for communicating informa-
tion to a device using one or more sensors. In one example,
the device identifier is encoded into a Near-Field Commu-
nication (NFC) chip or Radio-frequency identification
(RFID) tag. Other examples of such mechanisms, radio
waves, sounds waves, vibrations, visible features (e.g.,
edges, shapes, identifying marks), electromagnetic radia-
tion, and/or other mechanisms suitable for transmitting data.
In an embodiment, the computing device 204 scans the
QR-code 208 and locally (e.g., without communicating with
other devices) determines information associated with the
device 202 (e.g., a type of device, model information,
manufacturer, etc.). In an embodiment, the device identifier

US 12,219,000 B1

9

is unique relative to other device identifiers. For example, an
organization identifier included in the encoding schema is
unique relative to other organization identifiers, a project
identifier included in the encoding schema is unique relative
to other project identifiers, a model identifier included in the
encoding schema is unique relative to other model identifi-
ers, a device identifier included in the encoding schema is
unique relative to other device identifiers, and, as a result,
the corresponding device identifier generated by encoding
the combination of identifiers (e.g., organization, project,
model, and device) is unique.

In various embodiments, the computing device 204
decodes the device identifier encoded in the QR-code 208
and transmits the device identifier or a portion thereof over
the network 218 to the service 210. In one example, the
decoded device identifier includes a set of integer values
corresponding to a set of fields. As described in greater detail
below in connection with FIG. 3, the fields can include a
version number, entity identifier, project number, model
number, device identifier, and slot number in accordance
with at least one embodiment. For example, the string value
extracted from the QR-code is decoded into a bitstream (e.g.,
a string of ‘1” and “0’) and bit values are determined for the
corresponding fields (e.g., bits 0-3 encode the version num-
ber, bits 4-8 encode the entity identifier, etc.). In such
examples, the bit values are converted to integer values and
structured as described above in connection with FIG. 1. In
various embodiments, the conversion of integer values to
binary values includes encoding the integers as binary
values in accordance with an encoding schema. Such an
encoding schema can be used to encode attributes of the
device (e.g., organization, model, project, slot, etc.) from a
first representation (e.g., integer values) to a second repre-
sentation (e.g., binary values) suitable for encoding by the
alphabet.

While QR codes are used for the purpose of illustration,
it should be noted that other mechanisms can be used to
obtain a device identifier, such as via other optical encodings
of data (e.g., barcodes, matrix barcodes, character strings,
and/or images that utilize steganographic techniques), via
non-optical techniques (e.g., radio frequency identification
(RFID)), via audio, or combinations of the foregoing.

In an embodiment, the identifier or portion thereof (e.g.,
model number and/or device identifier) is transmitted to the
service 210, for example, in an appropriately configured API
call. In response, the service 210 provides the computing
device with a data model or other information defining
communication with the device 202 in accordance with an
embodiment. In this manner, the device 202 and/or comput-
ing device are not required to store this information and can
therefore be decoupled in such embodiments to enable a
plurality of devices to communicate without being precon-
figured. In various embodiments, the information returned
from the service 210 indicates slots associated with the
device configured for sense and control. For example, as
described in greater detail below in connection with FIG. 4,
a data model defines a set of slots including data types, data,
parameters, and other information useable to communicate
with the device 202. In one example, the data model
indicates slot 2 is associated with command and control of
the device 202 that causes the device 202, in response to a
particular parameter, to turn on and off. Similarly, as illus-
trated in FIG. 2, the data model may indicate a plurality of
slots and parameters for interacting with the device 202 and
the computing device 204 can display an interface for
interacting with the device 202.

10

15

20

25

30

35

40

45

50

55

60

65

10

In various embodiments, the interface enables remote
communication and control with the device 202. For
example, the computing device 204 can communicate with
the device 202 (once the device identifier has been used to
obtain device information from the service 210) and request
data (e.g., values) associated with particular slots. In addi-
tion, the computing device 204, in an embodiment, deter-
mines the current state of the device 202 based at least in part
on data obtained from the device 202 and the data model.
For example, the data model defines slot 3 as an integer
value indicating a pressure value measured by a pressure
sensor of the device 202, the computing device 204 may
then query the device 202 for the integer value associated
with slot 3 to determine the current state of the pressure
sensor. In another example, the computing device 204
transmits a command to the device 202 by at least trans-
mitting a particular value (e.g., the character ‘O’ or “X'
corresponding to on or off) to a particular slot and/or address
associated with the particular slot.

Although the environment 200 illustrated in FIG. 2
includes a service 210, in various other embodiments, the
computing device 204 includes instructions and/or other
data that enables the operations described without needing to
communicate with other entities. For example, the comput-
ing device 204 can decode the device identifier and deter-
mine, based at least in part on data stored within the
computing device 204, how to communicate with the device
202. In an embodiment, the information indicating how to
communicate with the device 202 includes information
indicating a communication protocol and/or mechanisms for
communicating with the device 202. In one example, the
information indicates a wireless network and/or communi-
cation protocol for establishing a connection with the device
202.

As illustrated in FIG. 2, the buttons (e.g., “button 1,”
“button 2,” a power button, and/or other buttons), in an
embodiment, are associated with slots as defined in the data
model and are useable to obtain data from the device 202
and/or transmit commands to the device 202. For example,
the device 202 includes source code or other instructions
that cause the slots to be addressable and, as a result, when
the device 202 obtains a command indicating a particular
slot (e.g., in response to a button press on the interface of the
computing device 204) the device 202 provides the appro-
priate response. In one example, “button 17 is a start/stop
button and an interaction with the button causes the com-
puting device 204 to send a command to the device 202
indicating the corresponding slot and including a parameter
that, in response to being received by the device 202, causes
the device 202 to start or stop an operation. In various
embodiments, the device information obtained from the
service 210 or other entity includes a description of the slots
and corresponding data types and/or operations. For
example, the device info includes a description of each
button displayed in the interface and the types of parameters
and/or values a particular slot may accept and/or provide.

FIG. 3 is a diagram illustrating an encoding schema 300
for a universal device identifier in accordance with an
embodiment. As illustrated in FIG. 3, the encoding schema
300 includes a version field 302, an entity field 304, a project
field 306, a model field 308, a device field 310, and a slot
field 312. In an embodiment, the encoding schema 300
defines a 256-bit wide bitstream with six fields of various
widths (e.g., a version field with a field width of three bits).
For example, the version field 302 of width 3 defines the
total number of possible versions (e.g., 23=8) as illustrated
in FIG. 3 as “Version 1”7 to “Version N.” Furthermore, an

US 12,219,000 B1

11

integer value, in various embodiments, is used to represent
the version number and is converted to a binary value for use
in the encoding schema 300. For example, version number
1 can be converted to the binary value of 001 within the 3-bit
width of the version field 302. In various embodiments, this
same process of converting integer values to binary values
to create a bitstream is used for all of the fields included in
the encoding schema 300. In addition, the encoding schema
300, in various embodiments, includes any number of fields
with any number of bit widths. Furthermore, the encoding
schema 300, in various embodiments, includes an extended
version with additional bit width.

In various embodiments, a stream of bytes (e.g., a bit-
stream generated by converting an integer value for each
field into binary values) is mapped to a string using an
alphabet. The alphabet, in various embodiments, includes
any binary-to-text encoding schema such as American Stan-
dard Code for Information Interchange (ASCII), ASCII8S,
Base64, Base85, Base62, Base58, Base36, Base32, Bech32,
BinHex, Hexadecimal, Multipurpose Internet Mail Exten-
sions (MIME), Unicode or any other binary-to-text encod-
ing. In various embodiments, a particular alphabet is
selected based on various factors such as string length (e.g.,
fewer characters in the alphabet may require a longer string
to encode any particular bitstream), human readability (e.g.,
certain characters may be difficult for humans to differen-
tiate), or other factors.

In various embodiments, the version information recorded
in the version field 302 indicates the alphabet used to encode
the bitstream. Furthermore, in various embodiments, the
version information recorded in the version field indicates
the bit widths and the set of fields included in the encoding
schema 300. In one example, version 1 of the encoding
schema 300 includes a project field with a 16-bit width,
while version 2 of the encoding schema 300 includes a
project field with an 8-bit width. In another example, version
1 of the encoding schema 300 includes a model field, while
version 2 of the encoding schema 300 includes a batch field.

In yet other embodiments, the encoding schema 300 is
used to represent other objects. In one example, the encod-
ing schema 300 represents a multiplayer online game includ-
ing references to items within the game environment. In
addition, the encoding schema 300, in various embodiments,
is embedded within source code or other instructions that, as
a result of being executed by a computing device, cause the
computing device to implement the encoding schema 300.

In other embodiments, the fields include, in addition to or
in replacement of the field illustrated in FIG. 3, manufac-
turing location, manufacture dates, lot information, batch, or
other information that is suitable for determining recalls
and/or otherwise troubleshooting issues with objects asso-
ciated with an identifier generated in accordance with the
encoding schema 300. In various embodiments, the bit-
stream is generated by at least concatenating the version
field 302, the entity field 304, the project field 306, the model
field 308, the device field 310, and the slot field 312 to
generate a 256-bit bitstream. For example, an integer value
of 1 to be included in the device field 310 is converted to a
45-bit long binary value and concatenated or otherwise
combined with the remaining fields defined by the encoding
schema 300. As such, in various embodiments, the bitstream
is encoded irrespective of the fields defined in the encoding
schema. However, in such embodiments, as a result of this
process being reversible, the bitstream can be obtained by
decoding using the same alphabet and the values associated

10

15

20

25

30

35

40

45

50

55

60

65

12

with the fields can be obtained by converting the bit indi-
cated in the encoding schema 300 (e.g., bits 0-2 correspond
to the version field 302).

FIG. 4 is a diagram illustrating a data model 400 for sense
and control data of a device associated with a universal
device identifier in accordance with an embodiment. As
described above in connection with FIG. 3, the universal
device identifier system, in various embodiments, includes
an encoding schema that defines one or more fields of device
identifiers generated in accordance with the encoding
schema. For example, the encoding schema includes a field
associated with slots of devices associated with device
identifiers. As illustrated in FIG. 4, the encoding schema
includes a version field 402, an entity field 404, a project
field 406, a model field 408, a device field 410, and slot
fields (e.g., “slot #1” 416 and “slot #2” 418). In addition, in
various embodiments, the data model 400 defines various
attributes from one or more fields of the encoding schema.

In various embodiments, the data model 400 indicates that
the model 408 includes various data type definitions 412 and
414. The data type definitions 412 and 414, for example,
represent data generated by sensors or other components of
the device 410. In one example, the data type definition 412
indicates a data type “battery” (e.g., a battery sensor of the
device 410) and a format “float” (e.g., a floating point value
is returned from the battery sensor). Furthermore, the data
model 400 indicates that the data type definition 412 is
associated with “slot #2” 418 in accordance with an embodi-
ment. For example, the data model 400 indicates to a
computing device that, when communicating with the
device 410 assigned to a particular device identifier gener-
ated based at least in part on the encoding schema, the value
“77.3” is a floating point value captured by the battery
sensor.

In various embodiments, slots may be added or removed.
For example, a light sensor or humidity sensor is added to
a particular device, as a result, a new model 408 of the
device 410 is added to the data model 400. As described in
the present disclosure, the fields illustrated in FIG. 4 may
include bit fields of various widths that when combined into
a bitstream can be encoded to generate a string value that can
be decoded back into the bitstream and corresponding bit
fields. In various embodiments, encoding and decoding
device identifiers generated in accordance with the encoding
schema can be described by the following pseudo-code:

def base_encode(num, alphabet):
if num == 0:
return ENCODING_SCHEME alphabet] + alphabet[0]
ar =[]
base = len(alphabet)
while num:
rem = num % base
num = num // base
arr.append(alphabet[rem])
arr.reverse()
return ENCODING_SCHEME [alphabet] + ".join(arr)
def _base_decode(string):
encoding_scheme = string[0:1]
remainder = string[1:]
alphabet = REVERSE_ENCODING_SCHEME][encoding scheme]
base = len(alphabet)
strlen = len(remainder)
num = 0

idx =0
for char in remainder:
power = (strlen — (idx + 1))
num += alphabet.index(char) * (base ** power)

US 12,219,000 B1

-continued
idx +=1
except ZeroDivisionError:
pass
return num

def to_udi(alphabet=ALPHABET, version=0, entity=0, project=0,
model=0, device=0, slot=0):

udi_format = f'uint:{VERSION_WIDTH]},
uint:{ENTITY_WIDTH}, uint:{PROJECT_WIDTH},
uint:{MODEL_WIDTH}, uint:{DEVICE_WIDTH},
uint:{SLOT_WIDTH}"

bitstream = pack(udi_format, version, entity, project, model,

device, slot)

intvalue = bitstream.uint

benc = _ base_encode(intvalue, alphabet)

return benc

def from_udi(value):

udi_format = f'uint:{VERSION_WIDTH]},
uint:{ENTITY_WIDTH}, uint:{PROJECT_WIDTH},
uint:{MODEL_WIDTH}, uint:{DEVICE_WIDTH},
uint:{SLOT_WIDTH}"

encoding = value[0:1]

alphabet = REVERSE_ENCODING_SCHEME.get(encoding,

None)

if not alphabet:

print(f"ERROR: unrecognized encoding scheme: '{encoding}"")
exit(1)

binvalue = _ base_decode(value)

bitstream = BitStream(uint=binvalue, length=TOTAL_WIDTH)

values = bitstream.unpack(udi_format)

version = values[0]

entity = values[1]

project = values[2]

model = values[3]

device = values[4]

slot = values[5]

return alphabet, version, entity, project, model, device, slot

Furthermore, in various embodiments, instructions defin-
ing the encoding and decoding are embedded in the firm-
ware or other executable code. Furthermore, various auto-
mated tools can be used to generate source code based at
least in part on the encoding schema and/or data model 400
as described in the present disclosure. For example, the
automated tools can be used to generate database fields,
storage nodes, virtual computing systems, and other entities
based at least in part on the encoding schema and/or data
model 400. In various embodiments, device identifiers gen-
erated by at least encoding values corresponding to the set
of fields lacks one or more or all of the values. Furthermore,
in an embodiment, the bits of the bitstream used to obtain a
symbol of the alphabet can come from a plurality of fields
of the set of fields. In addition, the decoding of the device
identifiers is performed without the need to decrypt the
device identifiers in accordance with an embodiment. In one
embodiment, a plurality of values can be obtained from the
device identifier without additional information (e.g., a
cryptographic key).

FIG. 5 shows a process 500 for encoding a device
identifier in accordance with an embodiment. In various
embodiments, the device identifier represents a device and/
or object as described above. For example, the device
includes an IoT device connected to a network. As described
above, the device identifier is encoded in accordance with
the encoding schema to generate a device identifier that is
unique relative to other devices encoded in accordance with
the encoding schema. In one embodiment, a device identifier
enables communication with the device based at least in part
on device information obtained from the device identifier. In
yet other embodiments, portions of the device identifier are
omitted to determine other information associated with the
device such as model number and/or manufacturer.

10

15

20

25

30

35

40

45

50

55

60

65

14

Now referring to FIGS. 5 and 6, the block of processes
500 and 600, described in the present disclosure, in various
embodiments, include a computing process that is per-
formed using any combination of hardware, firmware, and/
or software. The various functions, processes, and/or opera-
tions described in the present disclosure may be carried out
by a processor executing instructions stored in memory. In
one example, a computing device generates a device iden-
tifier for a particular device based at least in part on
information associated with the device. The processes, for
example, are embodied as computer usable instructions
stored on computer storage media. In addition, in some
embodiments, the processes are provided by a standalone
application, a service or hosted service (standalone or in
combination with another hosted service), or a plug-in to
another product, to name a few. In addition, the processes
500 and 600, are described, by way of example, with respect
to the computer system of FIG. 7. However, these processes
may additionally or alternatively be executed by any one
system, or any combination of systems, including, but not
limited to, those described in the present disclosure. In
addition, various blocks of the processes may be performed
in different and/or alternative orders, performed in serial or
parallel, or omitted entirely.

Returning to FIG. 5, the process 500, at block 502,
includes obtaining values corresponding to fields of an
encoding schema. In one example, the encoding schema
includes an entity field, a project field, a model field, a
device field, and a slot field with corresponding integer
values. For example, for a particular device, an entity
associated with the device (e.g., the manufacturer) is
assigned a value of 2135. In such an example, the value
obtained from the entity field of the encoding schema would
be 2135. At block 504, the system executing the process 500,
generates a bitstream based at least in part on the values. In
an embodiment, the values are converted to binary values
and concatenated to generate the bitstream. For example, the
encoding schema indicates that a model field is 16 bits wide
and the device field is 45 bits wide, the system executing the
process 500 converts the value obtained corresponding to
the model field to a 16-bit binary number (e.g., include
leading zeros) and the value obtained corresponding to the
device field to a 45-bit binary number and combines the
16-bit binary number with the 45-bit binary number to
generate the bit stream.

At block 506, the system executing the process 500,
encodes the bitstream using an alphabet. As described
above, the alphabet, in various embodiments, is defined in
the encoding schema and selected based on various factors
such as string length and human readability. Furthermore, in
an embodiment, the alphabet defines a binary-to-text con-
version. For example, for a particular alphabet the binary
value ‘1’ is translated to the character ‘a.” At block 508, the
system executing the process 500, returns the encoded
bitstream. In an embodiment, the encoded bitstream includes
a string value of human readable characters that represents
the device identifier corresponding to the values obtained at
block 502. The string value, for example, can then be
imprinted on the device and/or converted to a QR-code.

FIG. 6 shows a process 600 for communicating with a
device based at least in part on device information obtained
using a device identifier in accordance with an embodiment.
At block 602, the system executing the process 600, obtains
a device identifier. As described above, the system executing
the process 600, in an embodiment, includes a camera to
capture the device identifier. In yet other embodiments, a
user enters the device identifier into an interface. Further-

US 12,219,000 B1

15

more, the device identifier, in an embodiment, includes a
string value generated by at least encoding a binary value
using a particular alphabet. In one example, decoding the
device identifier includes converting the string value to a
binary number based at least in part on the alphabet. In other
words, in such examples, decoding the device identifier
includes reversing the process of encoding the device iden-
tifier. At block 604, the system executing the process 600,
decodes the device identifier based at least in part on an
encoding schema. In various embodiments, the encoding
schema is standardized for a universal device identifier
system utilized to generate the device identifier. In yet other
embodiments, a first number of bits of the device identifier
indicates version information and/or the encoding schema.

At block 606, the system executing the process 600,
determines a set of values corresponding to a field of the
device identifier based at least in part on the encoding
schema. In an embodiment, decoding the identifier generates
a binary value of a width defined by the encoding schema,
values for the field are then determined based at least in part
on the corresponding width for the field as defined in the
encoding schema. For example, if the encoding schema
defines bits 180-196 of the bitstream as corresponding to the
model number, the system executing the process 500, deter-
mines the value for the model number by at least converting
the binary value of bits 180-196 to an integer value. At block
608, the system executing the process 600, obtains device
information based at least in part on the values. For example,
as described above, the system executing the process 600,
transmits the values or a portion thereof to a service to obtain
device information. In one example, values for a manufac-
turer and model are obtained based at least in part on the
encoding schema and a service associated with the manu-
facturer is queried using an API call including the model
number.

At block 610, the system executing the process 600,
determines an addressable component of the device based at
least in part on the device information. For example, a data
model included in the device information indicates one or
more sense and control slots associated with the device. In
various embodiments, the addressable component includes
an address of the device and one or more parameters for
communicating with the device.

Furthermore, communication with the device may be
performed directly (e.g., through a wired or wireless con-
nection to the device) or indirectly (e.g., through a gateway,
proxy, or other device). At block 612, the system executing
the process 600, communicates with the device. In one
example, the system executing the process 600 obtains data
from the device. In another example, the system executing
the process 600 transmits a command to the device to
perform an operation.

FIG. 7 illustrates aspects of an example system 700 for
implementing aspects in accordance with an embodiment.
As will be appreciated, although a web-based system is used
for purposes of explanation, different systems may be used,
as appropriate, to implement various embodiments. In an
embodiment, the system includes an electronic client device
702, which includes any appropriate device operable to send
and/or receive requests, messages, or information over an
appropriate network 704 and convey information back to a
user of the device. Examples of such client devices include
personal computers, cellular or other mobile phones, hand-
held messaging devices, laptop computers, tablet computers,
set-top boxes, personal data assistants, embedded computer
systems, electronic book readers, and the like. In an embodi-
ment, the network includes any appropriate network, includ-

10

15

20

25

30

35

40

45

50

55

60

16

ing an intranet, the Internet, a cellular network, a local area
network, a satellite network or any other such network
and/or combination thereof, and components used for such
a system depend at least in part upon the type of network
and/or system selected. Many protocols and components for
communicating via such a network are well known and will
not be discussed herein in detail. In an embodiment, com-
munication over the network is enabled by wired and/or
wireless connections and combinations thereof. In an
embodiment, the network includes the Internet and/or other
publicly addressable communications network, as the sys-
tem includes a web server 706 for receiving requests and
serving content in response thereto, although for other
networks an alternative device serving a similar purpose
could be used as would be apparent to one of ordinary skill
in the art.

In an embodiment, the illustrative system includes at least
one application server 708 and a data store 710, and it should
be understood that there can be several application servers,
layers or other elements, processes or components, which
may be chained or otherwise configured, which can interact
to perform tasks such as obtaining data from an appropriate
data store. Servers, in an embodiment, are implemented as
hardware devices, virtual computer systems, programming
modules being executed on a computer system, and/or other
devices configured with hardware and/or software to receive
and respond to communications (e.g., web service applica-
tion programming interface (API) requests) over a network.
As used herein, unless otherwise stated or clear from con-
text, the term “data store” refers to any device or combina-
tion of devices capable of storing, accessing and retrieving
data, which may include any combination and number of
data servers, databases, data storage devices and data storage
media, in any standard, distributed, virtual or clustered
system. Data stores, in an embodiment, communicate with
block-level and/or object-level interfaces. The application
server can include any appropriate hardware, software and
firmware for integrating with the data store as needed to
execute aspects of one or more applications for the client
device, handling some or all of the data access and business
logic for an application.

In an embodiment, the application server provides access
control services in cooperation with the data store and
generates content including but not limited to text, graphics,
audio, video and/or other content that is provided to a user
associated with the client device by the web server in the
form of HyperText Markup Language (“HTML”), Exten-
sible Markup Language (“XML”), JavaScript, Cascading
Style Sheets (“CSS”), JavaScript Object Notation (JSON),
and/or another appropriate client-side or other structured
language. Content transferred to a client device, in an
embodiment, is processed by the client device to provide the
content in one or more forms including but not limited to
forms that are perceptible to the user audibly, visually and/or
through other senses. The handling of all requests and
responses, as well as the delivery of content between the
client device 702 and the application server 708, in an
embodiment, is handled by the web server using PHP:
Hypertext Preprocessor (“PHP”), Python, Ruby, Perl, Java,
HTML, XML, JSON, and/or another appropriate server-side
structured language in this example. In an embodiment,
operations described herein as being performed by a single
device are performed collectively by multiple devices that
form a distributed and/or virtual system.

The data store 710, in an embodiment, includes several
separate data tables, databases, data documents, dynamic
data storage schemes and/or other data storage mechanisms

US 12,219,000 B1

17

and media for storing data relating to a particular aspect of
the present disclosure. In an embodiment, the data store
illustrated includes mechanisms for storing production data
712 and user information 716, which are used to serve
content for the production side. The data store also is shown
to include a mechanism for storing log data 714, which is
used, in an embodiment, for reporting, computing resource
management, analysis or other such purposes. In an embodi-
ment, other aspects such as page image information and
access rights information (e.g., access control policies or
other encodings of permissions) are stored in the data store
in any of the above listed mechanisms as appropriate or in
additional mechanisms in the data store 710.

The data store 710, in an embodiment, is operable,
through logic associated therewith, to receive instructions
from the application server 708 and obtain, update or
otherwise process data in response thereto, and the applica-
tion server 708 provides static, dynamic, or a combination of
static and dynamic data in response to the received instruc-
tions. In an embodiment, dynamic data, such as data used in
web logs (blogs), shopping applications, news services, and
other such applications, are generated by server-side struc-
tured languages as described herein or are provided by a
content management system (“CMS”) operating on or under
the control of the application server. In an embodiment, a
user, through a device operated by the user, submits a search
request for a certain type of item. In this example, the data
store accesses the user information to verify the identity of
the user, accesses the catalog detail information to obtain
information about items of that type, and returns the infor-
mation to the user, such as in a results listing on a web page
that the user views via a browser on the user device 702.
Continuing with this example, information for a particular
item of interest is viewed in a dedicated page or window of
the browser. It should be noted, however, that embodiments
of the present disclosure are not necessarily limited to the
context of web pages, but are more generally applicable to
processing requests in general, where the requests are not
necessarily requests for content. Example requests include
requests to manage and/or interact with computing resources
hosted by the system 700 and/or another system, such as for
launching, terminating, deleting, modifying, reading, and/or
otherwise accessing such computing resources.

In an embodiment, each server typically includes an
operating system that provides executable program instruc-
tions for the general administration and operation of that
server and includes a computer-readable storage medium
(e.g., a hard disk, random access memory, read only
memory, etc.) storing instructions that, if executed by a
processor of the server, cause or otherwise allow the server
to perform its intended functions (e.g., the functions are
performed as a result of one or more processors of the server
executing instructions stored on a computer-readable storage
medium).

The system 700, in an embodiment, is a distributed and/or
virtual computing system utilizing several computer systems
and components that are interconnected via communication
links (e.g., transmission control protocol (TCP) connections
and/or transport layer security (TLS) or other cryptographi-
cally protected communication sessions), using one or more
computer networks or direct connections. However, it will
be appreciated by those of ordinary skill in the art that such
a system could operate in a system having fewer or a greater
number of components than are illustrated in FIG. 7. Thus,
the depiction of the system 700 in FIG. 7 should be taken as
being illustrative in nature and not limiting to the scope of
the disclosure.

40

45

55

18

The various embodiments further can be implemented in
a wide variety of operating environments, which in some
cases can include one or more user computers, computing
devices or processing devices that can be used to operate any
of'a number of applications. In an embodiment, user or client
devices include any of a number of computers, such as
desktop, laptop or tablet computers running a standard
operating system, as well as cellular (mobile), wireless and
handheld devices running mobile software and capable of
supporting a number of networking and messaging proto-
cols, and such a system also includes a number of worksta-
tions running any of a variety of commercially available
operating systems and other known applications for pur-
poses such as development and database management. In an
embodiment, these devices also include other electronic
devices, such as dummy terminals, thin-clients, gaming
systems and other devices capable of communicating via a
network, and virtual devices such as virtual machines,
hypervisors, software containers utilizing operating-system
level virtualization and other virtual devices or non-virtual
devices supporting virtualization capable of communicating
via a network.

In an embodiment, a system utilizes at least one network
that would be familiar to those skilled in the art for sup-
porting communications using any of a variety of commer-
cially available protocols, such as Transmission Control
Protocol/Internet Protocol (“TCP/IP”), User Datagram Pro-
tocol (“UDP”), protocols operating in various layers of the
Open System Interconnection (“OSI”) model, File Transfer
Protocol (“FTP”), Universal Plug and Play (“UpnP”), Net-
work File System (“NFS”), Common Internet File System
(“CIFS”) and other protocols. The network, in an embodi-
ment, is a local area network, a wide-area network, a virtual
private network, the Internet, an intranet, an extranet, a
public switched telephone network, an infrared network, a
wireless network, a satellite network, and any combination
thereof. In an embodiment, a connection-oriented protocol is
used to communicate between network endpoints such that
the connection-oriented protocol (sometimes called a con-
nection-based protocol) is capable of transmitting data in an
ordered stream. In an embodiment, a connection-oriented
protocol can be reliable or unreliable. For example, the TCP
protocol is a reliable connection-oriented protocol. Asyn-
chronous Transfer Mode (“ATM”) and Frame Relay are
unreliable connection-oriented protocols. Connection-ori-
ented protocols are in contrast to packet-oriented protocols
such as UDP that transmit packets without a guaranteed
ordering.

In an embodiment, the system utilizes a web server that
runs one or more of a variety of server or mid-tier applica-
tions, including Hypertext Transfer Protocol (“HTTP”) serv-
ers, FTP servers, Common Gateway Interface (“CGI”) serv-
ers, data servers, Java servers, Apache servers, and business
application servers. In an embodiment, the one or more
servers are also capable of executing programs or scripts in
response to requests from user devices, such as by executing
one or more web applications that are implemented as one
or more scripts or programs written in any programming
language, such as Java®, C, C# or C++, or any scripting
language, such as Ruby, PHP, Perl, Python or TCL, as well
as combinations thereof. In an embodiment, the one or more
servers also include database servers, including without
limitation those commercially available from Oracle®,
Microsoft®, Sybase®, and IBM® as well as open-source
servers such as MySQL, Postgres, SQLite, MongoDB, and
any other server capable of storing, retrieving, and accessing
structured or unstructured data. In an embodiment, a data-

US 12,219,000 B1

19

base server includes table-based servers, document-based
servers, unstructured servers, relational servers, non-rela-
tional servers, or combinations of these and/or other data-
base servers.

In an embodiment, the system includes a variety of data
stores and other memory and storage media as discussed
above that can reside in a variety of locations, such as on a
storage medium local to (and/or resident in) one or more of
the computers or remote from any or all of the computers
across the network. In an embodiment, the information
resides in a storage-area network (“SAN™) familiar to those
skilled in the art and, similarly, any necessary files for
performing the functions attributed to the computers, servers
or other network devices are stored locally and/or remotely,
as appropriate. In an embodiment where a system includes
computerized devices, each such device can include hard-
ware elements that are electrically coupled via a bus, the
elements including, for example, at least one central pro-
cessing unit (“CPU” or “processor”), at least one input
device (e.g., a mouse, keyboard, controller, touch screen, or
keypad), at least one output device (e.g., a display device,
printer, or speaker), at least one storage device such as disk
drives, optical storage devices, and solid-state storage
devices such as random access memory (“RAM”) or read-
only memory (“ROM”), as well as removable media
devices, memory cards, flash cards, etc., and various com-
binations thereof.

In an embodiment, such a device also includes a com-
puter-readable storage media reader, a communications
device (e.g., a modem, a network card (wireless or wired),
an infrared communication device, etc.), and working
memory as described above where the computer-readable
storage media reader is connected with, or configured to
receive, a computer-readable storage medium, representing
remote, local, fixed, and/or removable storage devices as
well as storage media for temporarily and/or more perma-
nently containing, storing, transmitting, and retrieving com-
puter-readable information. In an embodiment, the system
and various devices also typically include a number of
software applications, modules, services, or other elements
located within at least one working memory device, includ-
ing an operating system and application programs, such as
a client application or web browser. In an embodiment,
customized hardware is used and/or particular elements are
implemented in hardware, software (including portable soft-
ware, such as applets), or both. In an embodiment, connec-
tions to other computing devices such as network input/
output devices are employed.

In an embodiment, storage media and computer readable
media for containing code, or portions of code, include any
appropriate media known or used in the art, including
storage media and communication media, such as but not
limited to volatile and non-volatile, removable and non-
removable media implemented in any method or technology
for storage and/or transmission of information such as
computer readable instructions, data structures, program
modules or other data, including RAM, ROM, Electrically
Erasable Programmable Read-Only Memory (“EEPROM”),
flash memory or other memory technology, Compact Disc
Read-Only Memory (“CD-ROM”), digital versatile disk
(DVD) or other optical storage, magnetic cassettes, mag-
netic tape, magnetic disk storage or other magnetic storage
devices or any other medium which can be used to store the
desired information and which can be accessed by the
system device. Based on the disclosure and teachings pro-

20

40

45

50

20

vided herein, a person of ordinary skill in the art will
appreciate other ways and/or methods to implement the
various embodiments.

In various embodiments described throughout this disclo-
sure, computing resources are configured to perform tasks
(e.g., generate data, process data, store data, route messages,
transmit data, submit requests, process requests) by loading
computer-readable executable instructions into memory
that, as a result of execution by one or more processors,
cause the one or more processors to execute instructions to
perform tasks. In at least one embodiment, a computer
system is configured to perform a task through a software
application that controls the execution of specific com-
mands, requests, tasks, jobs, and more. A computer system
may be configured to execute computer-readable instruc-
tions encoded in a software application by loading execut-
able code of the software application into memory and using
one or more processors of the computer system to run the
executable instructions.

The specification and drawings are, accordingly, to be
regarded in an illustrative rather than a restrictive sense. It
will, however, be evident that various modifications and
changes may be made thereunto without departing from the
broader spirit and scope of the subject matter set forth in the
claims.

Other variations are within the spirit of the present
disclosure. Thus, while the disclosed techniques are suscep-
tible to various modifications and alternative constructions,
certain illustrated embodiments thereof are shown in the
drawings and have been described above in detail. It should
be understood. however, that there is no intention to limit the
subject matter recited by the claims to the specific form or
forms disclosed but, on the contrary, the intention is to cover
all modifications, alternative constructions, and equivalents
falling within the spirit and scope of this disclosure, as
defined in the appended claims.

The use of the terms “a” and “an” and “the” and similar
referents in the context of describing the disclosed embodi-
ments (especially in the context of the following claims) are
to be construed to cover both the singular and the plural,
unless otherwise indicated herein or clearly contradicted by
context. Similarly, use of the term “or” is to be construed to
mean “and/or” unless contradicted explicitly or by context.
The terms “comprising,” “having,” “including,” and “con-
taining” are to be construed as open-ended terms (i.e.,
meaning “including, but not limited to,”) unless otherwise
noted. The term “connected,” when unmodified and refer-
ring to physical connections, is to be construed as partly or
wholly contained within, attached to, or joined together,
even if there is something intervening. Recitation of ranges
of values herein are merely intended to serve as a shorthand
method of referring individually to each separate value
falling within the range, unless otherwise indicated herein,
and each separate value is incorporated into the specification
as if it were individually recited herein. The use of the term
“set” (e.g., “a set of items”) or “subset” unless otherwise
noted or contradicted by context, is to be construed as a
nonempty collection comprising one or more members.
Further, unless otherwise noted or contradicted by context,
the term “subset” of a corresponding set does not necessarily
denote a proper subset of the corresponding set, but the
subset and the corresponding set may be equal. The use of
the phrase “based on,” unless otherwise explicitly stated or
clear from context, means “based at least in part on” and is
not limited to “based solely on.”

Conjunctive language, such as phrases of the form “at
least one of A, B, and C,” or “at least one of A, B and C,”

US 12,219,000 B1

21

(i.e., the same phrase with or without the Oxford comma)
unless specifically stated otherwise or otherwise clearly
contradicted by context, is otherwise understood within the
context as used in general to present that an item, term, etc.,
may be either A or B or C, any nonempty subset of the set
of A and B and C, or any set not contradicted by context or
otherwise excluded that contains at least one A, at least one
B, or at least one C. For instance, in the illustrative example
of a set having three members, the conjunctive phrases “at
least one of A, B, and C” and “at least one of A, B and C”
refer to any of the following sets: {A}, {B}, {C}, {A, B},
{A,C}, {B, C}, {A, B, C}, and, if not contradicted explicitly
or by context, any set having {A}, {B}, and/or {C} as a
subset (e.g., sets with multiple “A”). Thus, such conjunctive
language is not generally intended to imply that certain
embodiments require at least one of A, at least one of B and
at least one of C each to be present. Similarly, phrases such
as “at least one of A, B, or C” and “at least one of A, B or
C” refer to the same as ““at least one of A, B, and C” and ““at
least one of A, B and C” refer to any of the following sets:
{A}, {B}, {C}, {A, B}, {A, C}, {B, C}, {A, B, C}, unless
differing meaning is explicitly stated or clear from context.
In addition, unless otherwise noted or contradicted by con-
text, the term “plurality” indicates a state of being plural
(e.g., “a plurality of items” indicates multiple items). The
number of items in a plurality is at least two but can be more
when so indicated either explicitly or by context.
Operations of processes described herein can be per-
formed in any suitable order unless otherwise indicated
herein or otherwise clearly contradicted by context. In an
embodiment, a process such as those processes described
herein (or variations and/or combinations thereof) is per-
formed under the control of one or more computer systems
configured with executable instructions and is implemented
as code (e.g., executable instructions, one or more computer
programs or one or more applications) executing collec-
tively on one or more processors, by hardware or combina-
tions thereof. In an embodiment, the code is stored on a
computer-readable storage medium, for example, in the
form of a computer program comprising a plurality of
instructions executable by one or more processors. In an
embodiment, a computer-readable storage medium is a
non-transitory computer-readable storage medium that
excludes transitory signals (e.g., a propagating transient
electric or electromagnetic transmission) but includes non-
transitory data storage circuitry (e.g., buffers, cache, and
queues) within transceivers of transitory signals. In an
embodiment, code (e.g., executable code or source code) is
stored on a set of one or more non-transitory computer-
readable storage media having stored thereon executable
instructions that, when executed (i.e., as a result of being
executed) by one or more processors of a computer system,
cause the computer system to perform operations described
herein. The set of non-transitory computer-readable storage
media, in an embodiment, comprises multiple non-transitory
computer-readable storage media, and one or more of indi-
vidual non-transitory storage media of the multiple non-
transitory computer-readable storage media lack all of the
code while the multiple non-transitory computer-readable
storage media collectively store all of the code. In an
embodiment, the executable instructions are executed such
that different instructions are executed by different proces-
sors—for example, in an embodiment, a non-transitory
computer-readable storage medium stores instructions and a
main CPU executes some of the instructions while a graph-
ics processor unit executes other instructions. In another
embodiment, different components of a computer system

10

15

20

25

30

35

40

45

50

55

60

65

22

have separate processors and different processors execute
different subsets of the instructions.

Accordingly, in an embodiment, computer systems are
configured to implement one or more services that singly or
collectively perform operations of processes described
herein, and such computer systems are configured with
applicable hardware and/or software that enable the perfor-
mance of the operations. Further, a computer system, in an
embodiment of the present disclosure, is a single device and,
in another embodiment, is a distributed computer system
comprising multiple devices that operate differently such
that the distributed computer system performs the operations
described herein and such that a single device does not
perform all operations.

The use of any and all examples or exemplary language
(e.g., “such as”) provided herein is intended merely to better
illuminate various embodiments and does not pose a limi-
tation on the scope of the claims unless otherwise claimed.
No language in the specification should be construed as
indicating any non-claimed element as essential to the
practice of inventive subject material disclosed herein.

Embodiments of this disclosure are described herein,
including the best mode known to the inventors for carrying
out inventive concepts described herein. Variations of those
embodiments may become apparent to those of ordinary
skill in the art upon reading the foregoing description. The
inventors expect skilled artisans to employ such variations
as appropriate, and the inventors intend for embodiments of
the present disclosure to be practiced otherwise than as
specifically described herein. Accordingly, the scope of the
present disclosure includes all modifications and equivalents
of the subject matter recited in the claims appended hereto
as permitted by applicable law. Moreover, any combination
of the above-described elements in all possible variations
thereof is encompassed by the scope of the present disclo-
sure unless otherwise indicated herein or otherwise clearly
contradicted by context.

All references including publications, patent applications,
and patents cited herein are hereby incorporated by refer-
ence to the same extent as if each reference were individu-
ally and specifically indicated to be incorporated by refer-
ence and were set forth in its entirety herein.

What is claimed is:

1. A computer-implemented method, comprising:

obtaining a plurality of values corresponding to a plurality

of respective device attribute types of an encoding
schema, the encoding schema organizing the plurality
of device attribute types hierarchically, wherein at least
one value of the plurality of values indicate a version of
the encoding schema;

generating a bitstream based at least in part on the

plurality of values;

reversibly converting the bitstream to a human-readable

identifier by at least assigning different subsets of the
bits to symbols in an alphabet that is selected within the
encoding schema based, at least in part, on human
readability;

associating in a database the human-readable identifier

with a device; and

in response to receiving information that indicates the

human-readable identifier, cause data generated by at
least one component of the device to be modified based,
at least in, part on the response indicating the human-
readable identifier.

2. The computer-implemented method of claim 1,
wherein the plurality of respective device attribute types
include at least one field associated with a version identifier,

US 12,219,000 B1

23

an entity identifier, a project identifier, a model identifier, a
device identifier, or a slot identifier.

3. The computer-implemented method of claim 1,
wherein the plurality of values further comprise integer
values representing information associated with the plurality
of respective device attribute types.

4. The computer-implemented method of claim 3,
wherein an integer value corresponding to a first device
attribute type of the device attribute types represents an
entity responsible for manufacturing the device.

5. A system, comprising:

one or more processors, and

memory that stores computer-executable instructions that

are executable by the one or more processors to cause

the system to:

obtain a device identifier associated with a device, the
device identifier comprising a set of values of an
alphabet that is selected within a schema based, at
least in part, on human readability;

decode the device identifier to obtain a bitstream;

determine, from a subset of bits of the bitstream, a
version of the schema that is associated with a device
attribute of a set of device attributes;

determine the set of device attributes of the device
based, at least in part, on the version; and

cause data generated by at least one component of the
device to be modified based, at least in part, on
receiving an indication of an attribute of the set of
device attributes.

6. The system of claim 5, wherein the instructions to cause
the system to cause data generated by at least one component
of the device to be modified further include computer-
executable instructions that, as a result of being executed by
the one or more processors, cause the system to:

determine, based at least in part on a first subset of bits of

the bitstream, an addressable component of the device;
and

communicate with the addressable component of the

device based at least in part on a second subset of bits
of the bitstream.

7. The system of claim 6, wherein the first subset of bits
of the bitstream represents an organization associated with
the device.

8. The system of claim 6, wherein the second subset of
bits of the bitstream represents a slot associated with the
device and defined in a data model.

9. The system of claim 5, wherein the memory further
includes computer-executable instructions that, as a result of
being executed by the one or more processors, cause the
system to determine sense and control information defined
in a data model associated with the device based at least in
part on the set of device attributes.

10. The system of claim 9, wherein the memory further
includes computer-executable instructions that, as a result of
being executed by the one or more processors, cause the
system to transmit a command to the device based at least in
part on a parameter defined in the data model.

11. The system of claim 9, wherein the memory further
includes computer-executable instructions that, as a result of
being executed by the one or more processors, cause the
system to obtain data associated with the device based at
least in part on a parameter defined in the data model.

12. The system of claim 5, wherein the memory further
includes computer-executable instructions that, as a result of
being executed by the one or more processors, cause the
system to determine a set of fields included in the bitstream
based at least in part on an encoding schema associated with

20

30

40

45

50

55

60

65

24

the device identifier, where a first subset of bits of the
bitstream corresponds to a first field of the set of fields and
a second subset of bits of the bitstream corresponds to a
second field of the set of fields.

13. A non-transitory computer-readable storage medium
storing thereon executable instructions that, as a result of
being executed by one or more processors of a computer
system, cause the computer system to:

obtain a first set of values representing one or more

attributes of a device;
generate, based on the first set of values, a second set of
values encoded according to a first encoding schema,
wherein one or more values of the second set of values
indicate a version of the first encoding schema;

generate, based on the second set of values, a device
identifier that reversibly encodes the first set of values
using a second encoding schema that is different from
the first encoding schema, wherein the device identifier
comprises a symbol of an alphabet that is selected from
within the second encoding schema based, at least in
part, on human readability of the device identifier; and

in response to receiving information that indicates the
device identifier, cause data generated by at least one
component of the device to be modified based, at least
in part, on the response that indicates the device iden-
tifier.

14. The non-transitory computer-readable storage
medium of claim 13, wherein the selection of the one or
more symbols comprises binary-to-text conversion.

15. The non-transitory computer-readable storage
medium of claim 13, wherein the one or more attributes of
the device include at least one of:

a version field, an entity field,

a project field, a model field,

a device field, a batch field,

a manufacturer field,

a date field,

a location field, or

a slot field.

16. The non-transitory computer-readable storage
medium of claim 13, wherein the instructions that cause the
computer system to obtain the first set of values further
include instructions that cause the computer system to obtain
a set of integer values.

17. The non-transitory computer-readable storage
medium of claim 13, wherein the instructions further com-
prise instructions that, as a result of being executed by the
one or more processors, cause the computer system to
generate a machine readable representation of the device
identifier.

18. The non-transitory computer-readable storage
medium of claim 13, wherein the device identifier further
comprises a human readable string value.

19. The non-transitory computer-readable storage
medium of claim 13, wherein the instructions further com-
prise instructions that, as a result of being executed by the
one or more processors, cause the computer system to
decode the device identifier based at least in part on the
second encoding schema to obtain the second set of values.

20. The non-transitory computer-readable storage
medium of claim 19, wherein the instructions further com-
prise instructions that, as a result of being executed by the
one or more processors, cause the computer system to:

obtain the first set of values from the second set of values

based at least in part on the first encoding schema; and

US 12,219,000 B1
25

obtain device information based at least in part on a first
value of the first set of values.

#* #* #* #* #*

26

	Front Page
	Drawings
	Specification
	Claims

